The Aluma Flying Form Truss System:
Original, Ground breaking Technology. Still the Best Choice.

Introduction

The Aluma Flying Form Truss has been the leading Truss system in the concrete shoring market for more than 30 years. When it was introduced in 1972, this lightweight aluminum system revolutionized shoring for repetitive cast-in-place floors which enabled contractors to move panels four times larger than had been possible before.

Today, backed by industry-leading engineering innovation and expertise, the Aluma Flying Form Truss sets the standard as a fast, modular shoring system that is adaptable to the widest range of building designs.

Safe
- Ongoing quality and maintenance inspections
- Wide array of safety accessories to choose from
- Designed by experienced engineers

Smart
- Extensive array of accessories to suit any job configuration
- Backed by industry leading engineering innovation
- Handles unique shaped panels

Efficient
- Made of light-weight aluminum
- One time assembly and dismantling reduces labor costs
- The Aluma Truss sets standards as a fast-modular shoring system
Experience and Innovation Delivers Unsurpassed Versatility

The Aluma Flying Form Truss System was developed for the specific purpose of cutting construction cycle times, reducing labor costs and improving productivity on buildings that have repetitive floor plans.

Instead of using the traditional handset frame and cross brace systems, the Aluma Truss System enables flying forms to be constructed using the range of versatile truss components together with Aluma Beams®. These forms are assembled only once and are re-used floor-by-floor, avoiding the need for costly dismantling and re-assembly of the forms as each floor is constructed.

The Aluma Truss System offers substantial savings in set-up and stripping time compared with handset shoring systems. When used with Aluma Beams® and the range of adjustment and handling accessories, this system gives the outstanding performance needed for today’s high speed construction methods.

The Aluma Flying Form Truss system can be designed to accommodate most structural configurations.

Super Efficient Core Components

1. Aluma Truss (L.H & R.H)
 The Aluma Truss (left hand and right hand) may be connected to other Trusses and Spacers to form various lengths of panels. The Aluma Truss is available in either 6’(1.83m), 5’(1.52m) and 4’(1.22m) heights or with or without extension legs. Aluma Trusses can be stacked in many ways to reach all required heights.

2. Aluma Truss Spacer
 Aluma Truss Spacers connect to Aluma Trusses or to other spacers to form various lengths of panels. Lengths available are nominal 10’(3.05m) and 8’(2.44m).

3. Truss Jack
 The Aluma Jack supports and levels the Aluma Flying Form Truss system. For fine adjustment, Aluma provides three sizes of Jack, ranging from 12”(0.305m) to 30” (0.762m). The Aluma Jacks remain attached to the Truss and are hinged up, out of the way during the flying operations.

4. Truss Landing Dolly 6’
 Truss Landing Dollies are used to receive truss panels with extension legs for final positioning after flying in order to free crane.

5. Truss Lowering Device 4’ & 6’
 This Truss Lowering Device allows “one step” lowering and raising of large Aluma Trusses when truss panels with extension legs are used.

6. Standard Glide & Tilting Glide
 Standard Glides are used to glide Truss panels to the outside of a building after stripping. Tilting Glides are usually placed at building edges to support Truss panels in a tilted position during the flying process.

7. 3 Ton Floor Jack
 The 3 Ton Floor Jack is used to lower Aluma Truss when standard truss panels are used.

8. Drop Center Dolly
 The Drop Center Dolly is used to transport Aluma Truss. It has a 3600lbs (1636kg) capacity.

9. Nylon Sling
 Nylon Slings are used as an alternate to the truss pick and used to pick up and fly truss panels.

10. Guardrail Beam
 Safety is built into the system, by use of the Guardrail Beam. This facilitates positioning of Guardrail Post Sockets and allows easy installation of a fully guarded perimeter.

11. Locking Pin
 Locking Pin sets are used to lock the inner and outer extension legs for various height adjustments.

12. Truss Pick
 The Truss Pick with a capacity of 3400lbs (1524kg) is used to lift truss panels.

Accessories

* Note: Equipment shown is for demonstration purposes only

SYSTEM COMPONENTS

Experience and Innovation Delivers Unsurpassed Versatility

The Aluma Flying Form Truss System was developed for the specific purpose of cutting construction cycle times, reducing labor costs and improving productivity on buildings that have repetitive floor plans.

Instead of using the traditional handset frame and cross brace systems, the Aluma Truss System enables flying forms to be constructed using the range of versatile truss components together with Aluma Beams®. These forms are assembled only once and are re-used floor-by-floor, avoiding the need for costly dismantling and re-assembly of the forms as each floor is constructed.

The Aluma Truss System offers substantial savings in set-up and stripping time compared with handset shoring systems. When used with Aluma Beams® and the range of adjustment and handling accessories, this system gives the outstanding performance needed for today’s high speed construction methods.

The Aluma Flying Form Truss system can be designed to accommodate most structural configurations.